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Abstract

We have identified low temperature (<30°C) arsenic sulphide forming in arsenic-rich processing wastes at the
historic Blackwater gold mine (1906-1951) on the South Island of New Zealand. Roasting wastes and tailings
from the mine are stored within several man-made dams on site. Sediments within the dams contain up 10 wt%
As, and up to 330 mg/L As and 20 mg/L SO, in pore water. Water pH in the waste material ranges from acid to
neutral (pH 2.8-6.7). Bright yellow, macroscopic arsenic sulphide occurs in patchy horizons, 15-45cm below the
surface. It is associated with organic matter within the sediments in suboxic to anoxic conditions. Scanning
electron microscope imaging of the arsenic sulphide shows a dense network of filamentous As-S nanotubes
(100 nm to 2 um diameter) and poorly-developed nano-crystalline aggregates (< 1 pm). X-ray diffraction and
Energy-dispersive X-ray spectroscopy analysis confirms realgar (As,S,) as the most likely As-S mineral present.
This study provides quantification of this naturally-occurring reduction process and provides insights into the
environmental conditions necessary to drive the process. Our findings also have implications for the
management of mine wastes and development of novel waste treatment systems.
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Introduction

Gold mining in New Zealand in the late 19" and early 20" century has left a legacy of
arsenic-rich deposits throughout the gold-mining regions. Mechanical and chemical
processing of gold-bearing ore releases arsenic contained within sulphide minerals and
historically, very little site remediation work occurred. The potential negative impact this
mobilised arsenic may have on the environment and human health depends largely on the
ability of dissolved arsenic to be sequestered into stable solid phases through either adsorption
or precipitation processes. In recent years, researchers have mostly focused on the formation
and stability of secondary arsenic minerals under oxic conditions, or the adsorption to or
coprecipitation of arsenic with other minerals. This study identifies rare low temperature
arsenic sulphide forming in reduced arsenic-rich processing residues of the historic
Blackwater gold mine on New Zealand’s West Coast. Through field investigations, X-ray
diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques, this study quantifies
the environmental conditions necessary for the formation of this unusual low-temperature
arsenic sulphide.
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Geology and mining history directly into the Snowy River. The cyanide soluti
: € soiution

piped into a storage vat for reuse and the » once passed through the zinc boxes, was

Blackwater mine ; by further refining (Wright, 2007). gold, now bound to the zinc shavings, was extracted
The Blackwater Mine is located on the West Coast of New Zealand’s South Island (Fig. 1)
and operated from 1906 until 1951. At its peak, Blackwater was the deepest hardrock gold Reefton

mine in New Zealand operating over 16 levels with two major shafts, Blackwater and
Prohibition, sunk 563.7m and 979.5m respectively. Over its lifetime, Blackwater mine
produced 732,907 oz. of gold from 160 Mt of ore (Christie and Braithwaite, 2003). Mining
ceased abruptly on 9 July 1951 when the Blackwater shaft collapsed, cutting off ventilation,

power and water supplies. Attempts to reopen the shaft immediately after the collapse were
unsuccessful and the mine closed on 17" July 1951 (Morris, 1986). In recent years, there has
been interest in resuming mining activity at Blackwater, although the collapse of Blackwater
shaft and significant post-closure deterioration of Prohibition shaft requires the developmen
of alternative access to the ore body. Construction of a new twin decline directly to No. 16
level is considered the most feasible option at present (OceanaGold, 2015).

Goldfield

Triassic-Recent
Sediments

The mine targeted the Birthday Reef, a single gold-quartz lode that averages 0.64m in widt
with a strike length of 1070m (Christie and Braithwaite, 2003). The reef has a N-NNE strike
is subparallel to bedding and steeply dipping. The ore contains abundant arsenopyrite and rar
pyrite (Christie and Braithwaite, 2003). Birthday Reef is part of the wider Reefton goldfield
hosted by the Cambrian-Ordovician Greenland Group metasediments (Fig, 1; Cooper, 1974
Adams et al., 1975). The Greenland Group consists of alternating sandstone and mudstor
turbidites that underwent Silurian-Devonian greenschist facies regional metamorphis
(Adams et al., 1975). The Greenland Group is bordered to the north and east by grani Greenland Group
plutons of the Late Devonian to Early Carbonifereous Karamea Suite and Early Cretaceou

Rahu Suite (Tulloch, 1983). Mafic dykes of various ages cross-cut the Greenland Grou

(Mortimer et al., 1995). The age and origin of the gold-bearing lodes of the Greenland Groi

has been debated. Some workers theorize that mineralisation occurred during the late stag

Devonian-
Carboniferous &
Cretaceous Batholith

Cambrian-Ordovician

L Gold mines

of regional metamorphism (Braithwaite and Pirajno, 1993), while others suggest t igure 1. Simplified geological map of the Reefton Goldfield showi i
mineralisation is of a magmatic origin, related to the Rahu Suite or post—Jurassic m and other recent and historic gold rr?i‘:gg location of Blackwater mine
instrusions (Hunt and Roddick, 1993). '
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Snowy Battery and Prohibition Ball Mill s

. dition of an arsenic conden
From 1908-1938, ore from Blackwater mine was processed at Snowy Battery (Morris, 19 As'
Over its lifetime, the battery underwent several modifications and upgrades to improve
recovery. The most significant of which was the addition of the Edwards roasting furn:
1924. Prior to 1924, concentrates were shipped to Australia for processing or, in the ¢
Jow-grade material, stockpiled at the battery (Wright, 2007). Processing of ore at Sn
Battery was a simple process. Ore and water fed through a 30-head stamping battery form
pulp that passed over mercury-coated copper plates to capture any free gold. This pro
alone accounted for 80-83% of total gold production. The remaining pulp was classific
coarse (sands) or fine (slimes). Wilfley tables separated the denser sulphides from the
fraction. These sulphides passed through the Edwards roaster to oxidise in preparation
subsequent cyanidation process. Both roasted and unroasted ore were piped to the ¢
plant, filling large steel vats. Any remaining water drained through the base of each vat
cyanide solution (0.4% NaCN) was added. The ore would remain in this solution for U
hours, at which point the gold-bearing cyanide solution was piped to the zinc extr '
and the tailings were sluiced out through the base of the tank, along drainage channels
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XRF analysis shows that there are localised areas around the site where very high arsenic
levels (up to 53 wt%) persist. These ‘hotspots’ occur at the remains of the roaster and flue,
and the foundation remains of the drying room in which Wilfley table sulphide concentrates
were stored prior to roasting (Fig. 2a). '

In contrast to Snowy Battery, tailings dams and settling ponds were constructed on the slopes
surrounding the Prohibition Mill to contain waste materials. The extent of the main tailings
impoundment is visible in aerial photos and covers an area of approximately 1400m>. A
second tailings impoundment (~ 1000 m?) on the NE edge of the site forms a long trench and
has developed into a wetland (Fig. 2¢). The composition of this wetland is considerably more
complex than the western tailing dam, as it contains tailings, arsenolite (As;O3) and As-rich
run-off from the adjacent roaster, deconstructed iron cladding and wooden framing from the
mill buildings and mine, and an abundance of organic matter. Both tailings dams were
targeted for sampling. This study draws on the large amount of data already published on the
chemistry of the Prohibition Ball Mill site (Haffert, 2009).

The vibrant yellow to orange colour of orpiment (As;S3) and realgar (AssS4) was a useful
indicator when sampling (see Fig. 2) and was easily identified in the field. Samples were
collected at three different sites — Snowy River drying room foundations (Figs 2a, b),
Prohibition wetland (Figs 2c, d) and Prohibition main tailings dam (Figs 2e, f). To prevent
oxidation reactions, samples were tightly wrapped up and frozen immediately after collection.
Once in the laboratory, samples were dried in a low temperature oven (35°C) prior to
analysis.

XRD

For identification of arsenic sulphide, mineral samples were separated from closely associated
organic material by hand picking under a light microscope. Samples were powdered in an
agate mortar and pestle and mounted on glass slides. X-ray diffraction was conducted on a
PANalytical X Pert PRO MPD PW3040/60 diffractometer with a CuK, source (A=1.5406A).
Continuous scan data were collected at diffraction angles between 3° and 60° operating at
40 kV and 30 mA with a step size of 0.008° and 10.075 seconds per step. Analysis and data -
processing was performed with X’Pert HighScore v4.0 and the ICDD PDF-4+ database.

SEM

A sample of the sulphide concentrate from Snowy Battery was made into a standard polished
thin section (30 pm thick). The thin section was examined with a polarized light microscope
to select suitable areas for more detailed examination. Samples of arsenic sulphide from eacil
site were mounted on pin stubs using double-sided carbon tape. The polished thin section and
stub-mounts were carbon coated using an Edwards E306A vacuum coating system. Sampie
were examined with a Zeiss Sigma VP FEG scanning electron microscope with an Oxforc
Instruments XMax 20 Si drift energy dispersion X-ray detector (EDX) at the Otago Centre: 0
Electron Microscopy (OCEM). The EDX analytical system was operated at 15 keV.
analyses were obtained with a tightly focussed beam that interacted with sample volumes WE
diameters of ~2 um. Analytical uncertainties for Na and heavier elements are £0.2 wt.%.
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Results

Characterisation of sample sites
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Discussion

Arsenic transformations

The arsenic at the Blackwater processing  sites originates as mesothermal arsenopyrite
(FeAsS). Roasting of the ore produces arsenolite (As,03) which undergoes dissolution, along
with weathering and dissolution of primary arsenopyrite. This dissolution process forms

dissolved As phases (e,g. H3As0;, H3As04) which wil] either undergo sorption onto iron
oxyhydroxides or precipitation as secondary As minerals Le. scorodite (FeAsO4'2HzO).
Secondary arsenolite and scorodite are well documented opn site, but arsenic sulphide has not
Previously been identified.

Currently at Blackwa

note is the presence of realgar in three
S, iron-rich quartzose tai

and organic matter.

different settings; weathered
quartzose tailings mixed with
ilings dam and wetland  at
n suboxic to anoxic conditions. At

lings, and iron-rich
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the surface i

S at Blackwater mine are consistent with those
y (Fig. 5). They are acidic (PH range =2.8 _ 5.0; this study) and anoxic
pyrite and pyrite provide a source of iron at Snowy
aematite from the roasting process provides a source of iron in the wetland
am. Higher levels of sulphate could be expected in the wetland and at Snowy
i ypsum from the roaster, and dissolution o arsenopyrite
oceur. Previous work by Haffert (2009) characterised the waters of the

; sulphate concentrations were 6.9-2() 7 mg/L, and iron concentrations
-71-34 2 mg/L.. Several
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I closecly associated with itg?II:hles aglrlrr?cllng dlrectl_y on tirr}beg fragments (Figs 2b, 4b) or is
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Conclusions

At Blackwater mine, environmental conditions permit the formation of rare low
temperature arsenic sulphide.

The arsenic sulphide occurs in at least three different sites at Blackwater mine:
weathered sulphide concentrates, iron-rich quartzose tailings, and iron-rich
quartzose tailings mixed with abundant arsenolite and organic matter.

SEM and XRD analyses indicate that the arsenic sulphide is a low-temperature
form of realgar (As4Sa4).

The close spatial association of organic matter indicates that it may play a
significant role in the formation of low temperature realgar.

AssSs formation may be significant in the sequestration of mobilised arsenic in
sites with low pH and high levels of dissolved arsenic, sulphate and iron.
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