Mine Drainage in Southland

J. Pope, D. Craw and T. Mulliner

Southland Mine Drainage

Te Where Witnesse

Contents

1. Introduction – mine drainage chemistry

2. Data Compilation

- 1. Water quality information
- 2. Rock geochemistry
- 3. Geological and mining information

3. Data Acquisition

- 1. Mine drainage data
- 2. Rock geochemistry and acid base accounting data
- 3. Turbidity data

4. Comparison to West Coast

5. Summary

1 Introduction – Mine Drainage Chemistry

- Pyrite oxidation
 - $\operatorname{FeS}_2 + 3.75O_2 + 3.5H_2O \rightarrow 2SO_4^{2-} + 4H^+ + \operatorname{Fe}(OH)_3$
 - Biologically catalysed
 - $\text{Fe}^{3+} + 3 \text{H}_2\text{O} \rightarrow \text{FeOH}_3 + 3 \text{H}^+$
- Release of other components
 - KAISi₃O₈ + 2H⁺ + 6H₂O \rightarrow K⁺ + 3H₄SiO₄(aq) + AI³⁺ 2OH⁻
 - Other sulphide minerals FeAsS, ZnS
 - Trace elements also included as impurities in sulphides

Mine Drainage Chemistry

- Formation processes well understood
- Acidity and/or elevated trace elements are the main problems
- Chemistry is variable
- Can identify PAF rocks with reasonable certainty through acid base accounting
- Can also identify trace element rich rocks

Data Compilation - Southland

- Geological and mining information
- DAME Database for assessment of mine environments
 - Water Quality Data
 - Rock Geochemical Data
- Southland data contributors
 - Environment Southland
 - SENZ, Eastern Corp.
 - NIWA

2 Coal and gold in Southland

- Sub-bituminous coal
- Lignite
- Hardrock Gold
- Alluvial Gold

Mine sites in southland

Newvale Mine~200 000tpa

- Curragh Mine
- 6Mtpa

Data Compilation ctd.

Water quality data

Mine drainage data
Newvale, Bell Brooke, Ohai

Rock Geochemistry data

Data Compilation - Summary

• Little data available

- AMD at Bell-Brook
- Acid base accounting data only from Ohai

Gaps identified

- Few mine drainage or pit lake analyses
- Acid base accounting data
- Little understanding of distribution of Bell-Brook style AMD
- No data on groundwater chemistry in lignite deposits

Data Acquisition - Mine Drainage Chemistry

Acid Base Accounting Methods

- Maximum potential acidity (MPA)
 - Estimate total acid production from S content

Acid neutralising capacity (ANC)

Net acid producing potential (NAPP) = MPA – ANC

- Net acid generation
 - Oxidise sulphides and react neutralising components simultaneously

Gore Lignite Measures

Mataura Acid base Accounting

MPA Data

- Sulphur can be present in several different oxidation states in rocks
 - Sulphide
 - Sulphur
 - Sulphate
 - Organic bound S

• Can conduct sulphide specific analyses

- Chromium reducible sulphur
- More expensive
- Require a fresh sample

Chromium Reducible Sulphur

- Conducted chromim reducible sulphur (CRS) on several samples from Mataura
- In general CRS about half total sulphur However...

Chromium Reducible Sulphur

- Conducted chromim reducible sulphur (CRS) on several samples from Mataura
- In general CRS However...

Operations: Import

■00-046-1045 (*) - Quartz, syn - SiO2 ●00-033-0311 (*) - Gypsum, syn - CaSO4-2H2O

O0-033-0311 (*) - Gypsum, syn - CaSO4-2H2O
 O0-029-0701 (I) - Clinochlore-1MIIb, ferroan - (Mg Fe)6(Si Al)4O10(OH)8

00-029-0701 (I) - Cinochlore-1MIIb, ferroan - (Mg,Fe)6(SI,AI)4
00-006-0263 (I) - Muscovite-2M1 - KAI2(SI3AI)010(OH,F)2

Mataura Acid base Accounting

Net Acid Generation Data

Uses a strong oxidising agent
 H₂O₂ - not selective

Organic material also reacts with H₂O₂

 Limited use especially in carbonaceous sediments

• Causes a false positive result

Net Acid Generation Data

- Example
- Samples from Croydon $-MPA = 1 \text{ kg}(\text{H}_2\text{SO}_4)/t$ NAG = 11 kg(H₂SO₄)/t $-MPA = 9 \text{ kg}(\text{H}_2\text{SO}_4)/t$ NAG = 34 kg(H₂SO₄)/t

Other Acid Base Accounting Data

- 7 representative samples from Nightcaps mine
 - NAF rocks
- 10 representative samples and 25 suspected PAF samples from Croydon
 - Representative samples NAF
 - Some suspected PAF samples highly acid producing
- 14 samples from gravels
 - All NAF
- 10-15 samples from Newvale Mine
 - Mostly NAF one PAF

Other data acquired

- Piesometers samples from throughout Southland
 - PAH analyses
 - Trace element analyses
- Slight elevation of some naturally occurring PAHs
- No substantial elevation of trace elements
- Turbidity prediction

Turbidity at Southland Mines

 Newvale - Turbidity settles naturally Days to month Ohai - Turbidity requires treatment • Little settling > 6months

Nightcaps, Mataura

Summary of data acquired

- Gaps identified
 - Few mine drainage or pit lake analyses
 - Acid base accounting data
- ?✓ Little understanding of distribution of Bell-Brook style AMD
 - No data on groundwater chemistry in lignite deposits

Comparison to West Coast – Mine Drainage Chemistry

Comparison to West Coast – Acid Base Accounting

Paparoa Coal Measures Bruner Coal Measures

Concludsion

- There is currently only very localised acid mine drainage in Southland
- There is potential for AMD there are some PAF rocks in the Gore Lignite Measures
- Any acid mine drainage issue is almost certain to be much more mild than the West Coast AMD
- We have an opportunity in Southland to be proactive rather than reactive and prevent mining related impact on aquatic ecosystems

