Mine Drainage in Southland

J. Pope, D. Craw and T. Mulliner
Contents

1. Introduction – mine drainage chemistry

2. Data Compilation
 1. Water quality information
 2. Rock geochemistry
 3. Geological and mining information

3. Data Acquisition
 1. Mine drainage data
 2. Rock geochemistry and acid base accounting data
 3. Turbidity data

4. Comparison to West Coast

5. Summary
1 Introduction – Mine Drainage Chemistry

• Pyrite oxidation

 – \(\text{FeS}_2 + 3.75\text{O}_2 + 3.5\text{H}_2\text{O} \rightarrow 2\text{SO}_4^{2-} + 4\text{H}^+ + \text{Fe(OH)}_3 \)
 – Biologically catalysed

 – \(\text{Fe}^{3+} + 3 \text{H}_2\text{O} \rightarrow \text{FeOH}_3 + 3 \text{H}^+ \)

• Release of other components

 – \(\text{KAlSi}_3\text{O}_8 + 2\text{H}^+ + 6\text{H}_2\text{O} \rightarrow \text{K}^+ + 3\text{H}_4\text{SiO}_4(\text{aq}) + \text{Al}^{3+} 2\text{OH}^- \)
 – Other sulphide minerals \(\text{FeAsS, ZnS} \)
 – Trace elements also included as impurities in sulphides
Mine Drainage Chemistry

• Formation processes well understood

• Acidity and/or elevated trace elements are the main problems

• Chemistry is variable

• Can identify PAF rocks with reasonable certainty through acid base accounting

• Can also identify trace element rich rocks
Data Compilation - Southland

• Geological and mining information

• DAME – Database for assessment of mine environments
 • Water Quality Data
 • Rock Geochemical Data

• Southland data contributors
 • Environment Southland
 • SENZ, Eastern Corp.
 • NIWA
2 Coal and gold in Southland

- Sub-bituminous coal
- Lignite
- Hardrock Gold
- Alluvial Gold
Coal and gold in Southland

- Sub-bituminous coal
- Lignite
- Hardrock Gold
- Alluvial Gold
2 Coal and gold in Southland

- Sub-bituminous coal
- Lignite
- Hardrock Gold
- Alluvial Gold
Mine sites in southland
• Newvale Mine
• ~200 000tpa

• Curragh Mine
• 6Mtpa
Data Compilation ctd.

- Water quality data
- Mine drainage data
 - Newvale, Bell Brooke, Ohai
- Rock Geochemistry data
Data Compilation ctd.

• Water quality data
Data Compilation - Summary

• Little data available
 • AMD at Bell-Brook
 • Acid base accounting data only from Ohai

• Gaps identified
 • Few mine drainage or pit lake analyses
 • Acid base accounting data
 • Little understanding of distribution of Bell-Brook style AMD
 • No data on groundwater chemistry in lignite deposits
Data Acquisition - Mine Drainage Chemistry

The graph shows the relationship between pH and Total Al + Fe (mmol) with data points indicated by red triangles. The pH values range from 3 to 8, while the Total Al + Fe values range from 0.0001 to 10 mmol.
Acid Base Accounting Methods

- Maximum potential acidity (MPA)
 - Estimate total acid production from S content

- Acid neutralising capacity (ANC)

- Net acid producing potential (NAPP) = MPA − ANC

- Net acid generation
 - Oxidise sulphides and react neutralising components simultaneously
Gore Lignite Measures
Mataura Acid base Accounting

Graph showing the relationship between NAG pH and NAPP kg(H₂SO₄)/t.
MPA Data

• Sulphur can be present in several different oxidation states in rocks
 • Sulphide
 • Sulphur
 • Sulphate
 • Organic bound S

• Can conduct sulphide specific analyses
 • Chromium reducible sulphur
 • More expensive
 • Require a fresh sample
Chromium Reducible Sulphur

- Conducted chromim reducible sulphur (CRS) on several samples from Mataura

- In general CRS about half total sulphur
However...
Chromium Reducible Sulphur

- Conducted chromium reducible sulphur (CRS) on several samples from Mataura

- In general CRS about half total sulphur

However…

![Graph showing Gypsum peaks](image.png)
Mataura Acid base Accounting

![Graph showing the relationship between NAG pH and NAPP kg(H₂SO₄)/t](image)
Net Acid Generation Data

- Uses a strong oxidising agent
 - H_2O_2 – not selective
- Organic material also reacts with H_2O_2
- Limited use especially in carbonaceous sediments
- Causes a false positive result
Net Acid Generation Data

- Example

- Samples from Croydon
 - $\text{MPA} = 1 \text{ kg}(\text{H}_2\text{SO}_4)/\text{t}$ \quad $\text{NAG} = 11 \text{ kg}(\text{H}_2\text{SO}_4)/\text{t}$
 - $\text{MPA} = 9 \text{ kg}(\text{H}_2\text{SO}_4)/\text{t}$ \quad $\text{NAG} = 34 \text{ kg}(\text{H}_2\text{SO}_4)/\text{t}$
? Alkaline

? Acidic

Conglomerate

Claystone

Sandstone

Carbonaceous Mudstone

Mudstone
Other Acid Base Accounting Data

- 7 representative samples from Nightcaps mine
 - NAF rocks

- 10 representative samples and 25 suspected PAF samples from Croydon
 - Representative samples NAF
 - Some suspected PAF samples highly acid producing

- 14 samples from gravels
 - All NAF

- 10-15 samples from Newvale Mine
 - Mostly NAF – one PAF
Other data acquired

- Piesometers samples from throughout Southland
 - PAH analyses
 - Trace element analyses
- Slight elevation of some naturally occurring PAHs
- No substantial elevation of trace elements
- Turbidity prediction
Turbidity at Southland Mines

- **Newvale**
 - Turbidity settles naturally
 - Days to month

- **Ohai**
 - Turbidity requires treatment
 - Little settling > 6months

- Nightcaps, Mataura
Summary of data acquired

- Gaps identified
 - Few mine drainage or pit lake analyses
 - Acid base accounting data
 - Little understanding of distribution of Bell-Brook style AMD
 - No data on groundwater chemistry in lignite deposits
Comparison to West Coast – Mine Drainage Chemistry

![Graph showing pH vs. Total Al + Fe (mmol)]
Comparison to West Coast – Acid Base Accounting

Paparoa Coal Measures
Bruner Coal Measures
Conclusion

• There is currently only very localised acid mine drainage in Southland

• There is potential for AMD – there are some PAF rocks in the Gore Lignite Measures

• Any acid mine drainage issue is almost certain to be much more mild than the West Coast AMD

• We have an opportunity in Southland to be proactive rather than reactive and prevent mining related impact on aquatic ecosystems